6878 # RESEARCH MEMORANDUM JET EFFECTS ON PRESSURE LOADING OF ALL-MOVABLE HORIZONTAL STABILIZER By Alfred S. Valerino Lewis Flight Propulsion Laboratory Cleveland, Ohio | Classification cancell | ed (or changed to Michael FIED | |------------------------|--| | By Authority of MAS | A TEGA PAR Addand CEMENT TISE (OFFICER AUTHORIZED TO CHAMSE) | | Ву | 211/2 5P | WASHINGTON FOR AERONAUTICS June 10, 1954 Security Classification of This Report Has Been Cancelled 0143294 NACA RM E54C24 NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS ## RESEARCH MEMORANDUM JET EFFECTS ON PRESSURE LOADING OF ALL-MOVABLE HORIZONTAL STABILIZER By Alfred S. Valerino #### SUMMARY An investigation was conducted in the NACA Lewis 8- by 6-foot supersonic tunnel to determine the effects of a cold exhaust jet on the pressure loadings of an all-movable, 45° sweptback horizontal stabilizer located in a region influenced by the jet. The investigation also included the effects of the stabilizer on the drags of the boattail, base annulus, and secondary-flow passage of a jet-exit model operating at Mach numbers of 0.63, 1.5, and 1.8 and at zero angle of attack. The test was conducted through a range of jet pressure ratios from 1 to 9 at stabilizer deflection angles of 0°, 5°, and 10°. Results of this investigation indicate that at jet pressure ratios of 1 to 9 the exhaust jet did not appreciably affect the pressure loadings of the stabilizer. The largest jet effects on the stabilizer were confined to a small region near the nozzle shroud and trailing edge of the stabilizer. The presence of the stabilizer resulted in large increases in the drags of the base and secondary-flow passage. #### INTRODUCTION An investigation was conducted in the NACA Lewis 8- by 6-foot supersonic tunnel to determine the effects of a cold exhaust jet on the pressure loadings of an all-movable horizontal stabilizer located in the vicinity of the jet. The investigation was conducted at free-stream Mach numbers of 0.63, 1.5, and 1.8 through a jet pressure-ratio range of 1 to 9 with 3-percent secondary flow at stabilizer deflection angles of 0° , 5° , and 10° . In addition, instrumentation was included on the jet-exit model to determine the effects of the stabilizer on boattail and base pressures. 2 CO. TEMPERATE NACA RM E54C24 #### SYMBOLS | | SYMBOLS | | |
 | |------------------|--|---|---|----------| | Th | e following symbols are used in this report: | | | | | A | aspect ratio, b^2/S , 3.5 | | |
3261 | | ъ | span of horizontal stabilizers, 2.695 ft | | | 57 | | C _{p,a} | base annulus pressure coefficient, $(p_a-p_0)/q_0$ | | | | | $c_{p,B}$ | base bleed pressure coefficient, $(p_B-p_0)/q_0$ | | | | | C _{p,b} | boattail pressure coefficient, $(p_b-p_0)/q_0$ | | | | | C _{p,s} | stabilizer pressure coefficient, $(p_s-p_0)/q_0$ | | |
. :. | | M | Mach number | | |
 | | P | total pressure | • | | · | | P_1/p_0 | jet pressure ratio | | | | | р | static pressure | | - | ē | | q | dynamic pressure | | | • | | ន | area of horizontal stabilizers, 2.076 sq ft | | | - | | x | distance upstream of base | | | | | δ | stabilizer deflection angle | | | | | Subscri | pts: | | | | | a | base annulus of afterbody | | | | | В | bleed passage | | |
- | | ъ | boattail | | | | | s | stabilizer | | | | | 0 | free stream | | | - | | | | | | | 1 conditions upstream of nozzle exit 3 ### APPARATUS AND PROCEDURE A schematic diagram of the wind-tunnel installation of the jet-exit model is presented in figure 1. The model was supported by two hollow struts of circular cross section that were attached to trunnions mounted in the tunnel wall. The model air flow, which was obtained from a source outside the tunnel, was measured with a sharp-edge orifice before it passed through the hollow support struts into the model. The model internal pressure was regulated by means of a butterfly valve located downstream of the orifice. The horizontal stabilizers, which had a dihedral angle of 5°25', were rotated 90° so that they would not be located in the wakes from the horizontal support struts (fig. 1). A photograph of the stabilizers attached to the afterbody is shown in figure 2. The stabilizers had an aspect ratio of 3.5, a taper ratio of 0.15, a sweepback of 45° at the quarter-chord line, and an NACA 65ACO6 airfoil section parallel to the free stream at the stabilizer root section. However, the thickness of the stabilizer was tapered to 4 percent at the tip section. The plan-form dimensions of the tail surface are presented in figure 3, along with a table listing the location of the 44 static orifices (22 orifices on the pressure and 22 on the suction surfaces of one stabilizer) used to determine pressure loadings. The pressure and suction surfaces of the stabilizers correspond to the upper and lower surfaces, respectively, of a stabilizer positioned in the horizontal plane. The stabilizers were investigated at deflection angles of 0° , 5° , and 10° and in two longitudinal positions with respect to the nozzle exit, as shown in figure 4. With the stabilizers in the aft position, the trailing edge of the root section was positioned 1.634 inches downstream of the nozzle exit; in the fore position, 0.085 inch upstream of the nozzle exit. The model afterbody pressure instrumentation is presented in figure 5. Ten wall statics were used to measure boattail pressures. Base pressures were measured with four static orifices on the base annulus of the afterbody. Internal instrumentation consisted of a 10-tube total-pressure rake located in the constant-area section upstream of the convergent nozzle and used to determine model internal pressures. Six static orifices on the outer surface of the nozzle were used to determine pressures in the secondary-flow passage. Thirty holes of 0.136-inch diameter were drilled circumferentially around the nozzle at station 70.63 to provide for secondary flow. A calibration of the bleed holes was used to determine the secondary weight-flow-ratio. #### RESULTS AND DISCUSSION The discussion herein pertains only to the results obtained from configurations with 3-percent secondary-flow ratio at free-stream Mach number of 1.5, inasmuch as similar results were obtained at Mach numbers 0.63 and 1.8. The chordwise pressure coefficients of the stabilizer at Mach numbers of 0.63 and 1.8 for the range of jet pressure ratios investigated are presented in table I. The chordwise pressure distributions of the stabilizers at the jet-off condition and at the jet pressure ratio P_1/p_0 of 9 are presented in figure 6. Since the tubing of the static orifices at chord stations 4.65 and 14.8 of tail station 4.50 leaked, only the jet-off data points are plotted at tail station 4.50. The distributions at jet pressure ratios of 1, 4, and 6 exhibit the same trends as do those at pressure ratio of 9 and were, therefore, not included in the figures. The data presented in figure 6 indicate that the influence of the jet on the pressure loading of the stabilizers is not appreciable. At stabilizer deflection angle of 00 (fig. 6(a)), the jet effect was felt spanwise to tail station 4.50. Increasing the deflection angle resulted in a spanwise spreading of the jet effect: with the stabilizer deflected 50 (fig. 6(b)), the pressures to tail station 5.50 were influenced; while at 100 deflection angle (fig. 6(c)), the jet affected the distribution of the stabilizer to tail station 7.09 (suction side only at tail station 7.09). For each of these configurations, however, the jet effects were confined within the region bounded by the 65- and 100-percent-chord stations. Moving the stabilizer to the fore position (fig. 6(d)) reduced the jet effects. With a deflection angle of 10°, the jet effect was limited spanwise to tail station 4.50 and chordwise between the 70-and 100-percent-chord stations, on the suction side of the stabilizer only. The effect of the stabilizer on the boattail pressure distribution is presented in figure 7. For zero deflection angle, the boattail pressures on both sides of the stabilizer were nearly equal. As would be expected, increasing the deflection angle resulted in a decrease in pressure near the suction side and an increase near the pressure side of the stabilizer. At pressure ratios of 6 and 9, flow separation on the boattail was experienced with the configurations with the body alone and with the stabilizer deflected 0°. As the deflection angle was increased, only the flow passing by the suction side of the stabilizer was separated. The effect of the stabilizer on the base annulus pressure coefficients is presented in figure 8. The annulus pressure 326] coefficients obtained from the configurations with stabilizers were not appreciably affected by the stabilizer deflection angle or by the stabilizer position. However, the presence of the stabilizer resulted in large increases in base annulus pressure coefficients. At jet pressure ratios of 4 and 9, the base pressure coefficients of the configurations with stabilizers were, respectively, approximately 37 and 150 percent higher than those of the body-alone configuration. Pressure coefficients in the secondary-flow passage (fig. 8) were affected in a manner similar to the base annulus coefficients. Up to pressure ratios of 6, the pressures of the configurations with stabilizer did not vary significantly. However, as the pressure ratio was increased to 9, the drags due to the secondary flow, for the configurations with the stabilizer deflected 0° and 5°, were considerably higher than those of the configurations having the stabilizer deflected 10°. At jet pressure ratio of 4, the bleed-passage drag of the configurations with stabilizers was approximately 29 percent higher than that of the body-alone configuration. At pressure ratio of 9, the drags due to secondary flow for the configurations with stabilizers deflected 0° and 5° and the configurations with stabilizers having a deflection angle of 10° were, respectively, approximately 90 and 35 percent higher than the drag of the body-alone configuration. ### SUMMARY OF RESULTS An investigation was conducted to determine exhaust-jet effects on the pressure loading of an all-movable, 45° sweptback horizontal stabilizer located in a region influenced by the jet. The stabilizer effects on the boattail, base annulus, and secondary-flow-passage drags of the jet-exit model were also investigated at zero model angle of attack through a range of jet pressure ratios from 1 to 9 with 3-percent secondary-flow ratio, and at stabilizer deflection angles of 0°, 5°, and 10°. The following results were obtained at free-stream Mach numbers of 0.63, 1.5, and 1.8: - 1. Pressure loadings on the stabilizer were not appreciably affected by the jet pressure ratio. - 2. The addition of the stabilizer to the basic configuration resulted in large increases in base annulus and secondary-flow-passage drags. Lewis Flight Propulsion Laboratory National Advisory Committee for Aeronautics Cleveland, Ohio, March 22, 1954. TABLE I. - STABILIZER PRESSURE COEFFICIENTS (a) Mach number 1.8, stabilizer in aft position, deflection angle = 0° | Tail station | Tubel | Percent chord | Jet | pressure T | atio, P ₁ /p | °o | |--------------|---------|---------------|---------------------------------------|-----------------|-------------------------|-----------------| | | | | Jet-off | 4 | 6 | 9 | | | | | | Pressure co | efficient | | | 11.29 | a
a' | 8.6 | 0.0507
.0540 | 0.0506 | 0.0499 | 0.0524
.0606 | | | b
b' | 19.9 | 0016
.0229 | 0106
.0204 | 0106
.0204 | .0122 | | | c
c' | 56.2 | 0786 :
0663 | 0727
0555 | 0769
0621 | 0827
0617 | | | đ
đ' | 76.5 | 0876
0974 | 0923
0955 | 0842
0990 | 0753
0958 | | | e
e¹ | 85.5 | 1056
1007 | 1004
1015 | 1006
1014 | 0982
0917 | | 7.09 | f
f' | 4.96 | 0.0515
.0401 _ | 0.0498
.0367 | 0.0499
.0376 | 0.0606 | | | g' | 12.9 | 0040
.0098 | .0008 | .0065 | 0008
.0376 | | | h
h' | 4 5.6 | 0728
0507 | 0792
0571 | 0810
0589 | 0859
0532 | | | 1
1 | 60.7 | 1130 | 1160
0710 | 1137
0635 | 1146
0745 | | | j, | 77.8 | 1433
0925 | 1413
0939 | 1407
0941 | 1449
0950 | | | k
k' | 86.1 | 1384
1154 | 1380
1160 | 1407
1137 | 1400
1146 | | | 1
1' | 89.8 | 1859
1228_ | 1879
1217 | 1882
1219 | 1850
1212 | | 5.50 | m , | 66.5 | -0.2063
1285 | -0.2066
1290 | -0.2070
1292 | -0.2055
1318 | | | n
n' | 89.2 | 2047
1547 | 2475
1544 | 2446
1554 | 1146
1523 | | 4.50 | 0 0 1 | 4.65 | 0.1957
.0851_ | | | | | | p
p' | 14.8 | .0155
.0262 | | | | | | q
q' | 43.7 | 1007
0704 | 1094
0767 | 1096
0761 | 1146
0884 | | | r
r' | 57.6 | 2194
1654 | 2205
1666 | 2201
1661 | 2170
1678 | | | 8
8' | 71.5 | 2481 -
1965 | 2622
1952 | 2618
1996 | 2211
1973 | | | t
t' | 90.3 | 1826
1482 | 1748
1486 | 1603
1530 | 0925
1285 | | 3.85 | u
u' | 74.7 | -0.1990
07 4 5 | -0.2246
1102 | -0.2225
1080 | -0.1269
0532 | | | A ; | 91.9 | 1433
1425 | 1266
1601 | 1243
1587 | 0278
0573 | ¹ Prime symbols denote static orifices on suction surface. 1923 TABLE I. - Continued. STABILIZER PRESSURE COEFFICIENTS (b) Mach number 1.8, stabilizer in aft position, deflection angle = 5° | Tail station | Tubel | Percent chord | Jet | pressure i | ratio, P ₁ /p | | |---------------|----------|---------------|-----------------|-----------------|--------------------------|-----------------| | 1011 50051011 | 1450 | | Jet-off | 4 | 6 | 9 | | | | | 1 | Pressure c | oefficient | | | 11.29 | a
a ¹ | 8.6 | 0.1852
1229 | 0.1867
1253 | 0.1818
1245 | 0.1871
1231 | | | b
b' | 19.9 | .1187
.5132 | .1203
.6282 | .1279
.5656 | .1489
.4334 | | | c
c' | 56.2 | .0157
1661 | .0149
1510 | .0124
1652 | .0099
1680 | | | đ
đ¹ | 76.5 | 0315
1719 | 0290
1543 | 0373
1644 | 0374
1630 | | | e
e¹ | 85.5 | 0382
1553 | 0398
1535 | 0490
1470 | 0490
1405 | | 7.09 | f
f' | 4.96 | 0.1835
1187 | 0.1842
1120 | 0.1827
1187 | 0.1846
1198 | | | g, | 12.9 | .1112
1046 | .1136
1020 | .1088
1063 | .1089
1031 | | | h
h' | 45.6 | 0091
0722 | 0165
0663 | 0348
0822 | 0391
0856 | | | 1
1 | 60.7 | 1162 | 1136 | 1245 | 1264 | | | j, | 77.8 | 0697 | 0232 | 0465 | 0931 | | | k
k' | 86.1 | 0897
1694 | 0921
1775 | 0955
1760 | 0890
1722 | | | 1
1' | 89.8 | 1403 | 1352
 | 1420 | 1439
 | | 5.50 | m
m t | 66.5 | -0.1611
1519 | -0.1551
1601 | -0.1619
1561 | -0.1630
1547 | | | n
n' | 89.2 | 2009
2217 | 1908
2141 | 2009
2192 | 2029
2212 | | 4.50 | 0 0 | 4.65 | 0.0074 | | | | | | p, | 14.8 | .0880 | | | | | | ď. | 43.7 | 0232
1146 | 0282
1029 | 0390
1212 | 0449
1198 | | | r
r' | 57.6 | 1818
1877 | 1717
1809 | 1810
1868 | 1838
1863 | | | s
s ' | 71.5 | 2267
2209 | 2165
2207 | 2267
2217 | 2237
2237 | | | t
t' | 90.3 | 1777
1810 | 1717
1941 | 1669
1619 | 0940
0931 | | 3.85 | น | 74.7 | -0.2101
2117 | -0.2000
2008 | -0.2109
2093 | -0.2121
2079 | | | A . | 91.9 | 1328
1503 | 1468
1659 | 0988
1063 | 0673
0457 | ¹ Prime symbols denote static orifices on suction surface. TABLE I. - Continued. STABILIZER PRESSURE COEFFICIENTS (c) Mach number 1.8, stabilizer in aft position, deflection angle = 10° | Tail station | Tubel | Percent chord | Jet | pressure | ratio, P ₁ /1 | ρ _ο | |--------------|----------|---------------|-----------------|-----------------------|--------------------------|-----------------| | | | | Jet-off | 4 | 6 | 9 | | | | | P | ressure co | efficient | | | 11.29 | a
a' | 8.6 | 0.3176
2358 | 0.3228
2338 | 0.3317
2354 | 0.3303
2382 | | , | р,
р, | 19.9 | .2593
2285 | .2564
2233 | .2564
2297 | .2552
2318 | | | c t | 56.2 | 1053
2560 | .1051
2491 | .1027
2605 | .1001
2633 | | | đ; | 76.5 | .0591
2617 | .0606
2564 | .0590
2629 | .0581
2633 | | | e
e¹ | 85.5 | .0534
2471 | .0525
2435 | .0550
2516 | .0525
2520 | | 7.09 | f
f' | 4.96 | 0.3257
.1709 | 0.3228
.2168 | 0.3260
.1343 | 0.3247 | | | g, | 12.9 | .2269 -
2139 | .2257
2095 | .2241
2160 | .2245
2189 | | | h
h' | 45.6 | .0786 -
1434 | .0784
1391 | .0800
1423 | .0791
1429 | | | i
1' | 60.7 | .0089
1077 | .0080
0817 | .0080
1286 | .0080
1284 | | | j
j | 77.8 | 0494
1912 | 0469
1893 | 0493
1957 | 0500
2019 | | | k
k' | 86.1 | 0356
2082 | 0372
2071 | 0372
2095 | 0395
2124 | | | 1 | 89.8 | 0794
2139 | 0776
2119 | 0817
2160 | 0815
2180 | | 5.50 | m ' | 66.5 | -0.1110
2179 | -0.1092
2144 | -0.1140
2241 | -0.1147
2285 | | | n
n¹ | 89.2 | 1450
2309 | 1415
2289 | 1472
2313 | 1478
1736 | | 4.50 | 0 0 ' | 4.65 | 0.2017
0721 | | | | | | p
p' | 14.8 | .1636
0316 | | | | | | ď, | 43.7 | .0316
1717 | .0275
1755 | .0283
1982 | .0250
2245 | | | r
r' | 57.6 | 1377
2455 | 1343
2370 | 1399
2516 | 1421
2568 | | | 8
8 ' | 71.5 | 1831
2479 | 1779
2 4 51 | 1836
2508 | 1857
2463 | | | t
t' | 90.3 | 1531
2139 | 1488
2176 | 1626
1294 | 1599
0597 | | 3.85 ' | u
u' | 74.7 | -0.1896
2277 | -0.1868
2208 | -0.1949
2297 | -0.1978
1655 | | | A A | 91.9 | 1758
 | 1618 | 1650 | 0920 | ¹ Prime symbols denote static orifices on suction surface. 8 TABLE I. - Continued. STABILIZER PRESSURE COEFFICIENTS (d) Mach number 1.8, stabilizer in fore position, deflection angle = 10° | Tail station | Tube 1 | Percent chord | Jet pressure ratio, P ₁ /p ₀ | | P_1/P_0 | |--------------|----------|---------------|--|------------------------|-----------------| | | | | Jet-off | 4 | 6 | | | | | Pressu | re coefficien | nt | | 11.29 | a
a† | 8.6 | 0.2999
2373 | 0.3058
2409 | 0.3170
2375 | | | ъ' | 19.9 | .2381
2397 | .2457
2417 | .2479
2367 | | | c
c' | 56.2 | .0809
2646 | .0768
2690 | .0778
2616 | | | đ đ | 7 6. 5 | .05 4 5
2582 | .0520
2610 | .0537
2568 | | | e
e¹ | 85.5 | .0561
2638 | .0528
2650 | .0489
2592 | | 7.09 | f
f' | 4.96 | 0.3143
2213 | 0.3122
2249 | 0.3138
2207 | | | g
g' | 12.9 | .2149
2181 | .2121
2193 | .2191
2158 | | | h
h' | 45.6 | .0625
1419 | .0576
1409 | .0561
1372 | | | i
i' | 60.7 | .0368
1844 | .0376
18 4 9 | .0393
1837 | | | j, | 77.8 | 1788 | .0248
1793 | 0208
1789 | | | k
k' | 86.1 | 0008
1924 | 0008
1945 | 0016
1926 | | | 1 | 89.8 | 0433
1956 | 0416
1985 | 0385
1950 | | 5.50 | m I | 66.5 | -0.0184
1924 | -0.0176
1921 | -0.0184
1910 | | | n
n' | 89.2 | 1323
2237 | 1329
2353 | 1292
2126 | | 4.50 | 0 1 | 4.65 | 0.1748
0793 | | | | | p
p¹ | 14.8 | .1427
0441 | | | | | ď, | 43.7 | .0842
1836 | .0800
1857 | .0754
2118 | | | r
r¹ | 57.6 | .0120
1932 | .0104
1993 | .0112
1934 | | | 8
S ' | 71.5 | 1242
2373 | 1257
2433 | 1211
2335 | | | t
t' | 90.3 | 1740
1972 | 1737
2217 | 1701
1605 | | 3.85 | u
u' | 74.7 | -0.2085
2510 | -0.2129
2626 | -0.2014
2255 | | | Δ, | 91.9 | 1780
1972 | 1793
22 4 1 | 1621
1476 | $^{^{1}\}mathrm{Prime}$ symbols denote static orifices on suction surface. TABLE I. - Continued. STABILIZER PRESSURE COEFFICIENTS (e) Mach number 0.63, stabilizer in aft position, deflection angle = 0° | Tail station | Tubel | Percent chord | | Jet pres | sure ratio | p_{1}/p_{0} | | |--------------|----------|---------------|-----------------|-----------------|-----------------|-----------------|-----------------| | | | | Jet-off | 2 | 2.5 | 3 | 3.5 | | | | | | Pressur | e coeffici | ent | | | 11.29 | a
a ' | 8.6 | -0.1951
1271 | -0.1866
1250 | -0.1795
1214 | -0.1781
1269 | -0.1757
1247 | | | р,
р, | 19.9 | 1498 | 1461 | 1443 | 1446 | 144 | | | c
c' | 56.2 | 1637
1324 | 1549
1267 | 1496
1214 | 1516
1146 | 1511
1142 | | | đ
đ' | 76.5 | 0505
0418 | 0404
0352 | 0404
0387 | 0440
0423 | 0404
0333 | | | e
e' | 85.5 | 0069
.0052 | 0052
0035 | 0052
 | 0052 | 0035
0035 | | 7.09 | f
f' | 4.96 | -0.2317
1585 | -0.2288
1549 | -0.2235
1566 | -0.2204
1622 | -0.2161
1564 | | | g
g' | 12.9 | 2770
1933 | 2658
1919 | 2658
1883 | 2627
1887 | 2636
1845 | | | h
h' | 45.6 | 2700
2177 | 2464
1989 | 2411
1883 | 2433
1887 | 2590
1880 | | | 1
1 | 60.7 | 1777
1254 | 1584
1144 | 1549
1126 | 1569
1146 | 1511
1089 | | | ا
ئ ئ | 77.8 | 0487
0313 | 0246
0105 | 0264
0105 | 0229 | 040
008 | | | k
k' | 86.1 | .0034
.0121 | .0246
.0316 | .0281
.0316 | .0264
.0299 | .028 | | | 1
1' | 89.8 | .0348
.0348 | .0369
.0563 | 0088
.0510 | .0370
.0511 | .049
.050 | | 5.50 | m . | 66.5 | -0.1463
1219 | -0.1267
1091 | -0.1214
1056 | -0.1199
1022 | -0.117
100 | | | n
n' | 89.2 | .0365
.0296 | .0739 | .0757
.0457 | .0740
.0599 | .080
038 | | 4.50 | 0 01 | 4.65 | -0.0383
0662 | | | | | | | p
p' | 14.8 | 1289
0975 | | | | | | | q q' | 43.7 | 5714
3937 | 5510
3750 | 5457
3679 | 5485
3703 | 560
362 | | | r
r' | 57.6 | 3031
2665 | 2799
2464 | 2764
2429 | 2751
2433 | 275
230 | | | 8
8' | 71.5 | 1080
1097 | 0880
0968 | 0809
0845 | 0723
0864 | 066
077 | | | t
t' | 90.3 | .0487
.0209 | .0862
.0563 | .0915
.0580 | .0934
.0564 | .093
.056 | | 3.85 | u
u' | 74.7 | -0.1045 | -0.0845 | -0.0774 | -0.0723 | -0.059 | | | V ' | 91.9 | .0400
.0243 | .0686
.0598 | .0757
.0633 | .0740
.0652 | .075
.124 | $^{^{1}\}mathrm{Prime}$ symbols denote static orifices on suction surface. TABLE I. - Continued. STABILIZER PRESSURE COEFFICIENTS ## (f) Mach number 0.63, stabilizer in aft position, deflection angle = 100 | Tail station | Tubel | Percent chord | T | Jet pressure ratio, P ₁ /p ₀ | | | | |--------------|----------|---------------|-----------------|--|-----------------|-----------------|------------------| | | [| | Jet-off | Ž | 2.5 | 3 | 3.5 | | | | | | Pressur | e coeffici | .ent | | | 11.29 | a
a¹ | 8.6 | .0.5054 | 0.3162 | 0.5104 | 0.5159 | 0.3156 | | | b
b' | 19.9 | .1727 | .1908 | .1851 | .1851 | .1904 | | | c
c' | 56.2 | .0122 | .0300 | .0299 | .0317 | .0517 | | | đ
đ' | 76.5 | .0104
3438 | .0500
2844 | .0282
2852 | .0335
2892 | .0517
2804 | | | e
e¹ | 85.5 | .0209
1832 | .0318
1024 | .0239
1040 | .0299
1058 | .0317
1022 | | 7.03 | f
f' | 4.96 | 0.2687 | 0.2809 | 0.2733 | 0.2804 | 0.2786 | | | g
g' | 12.9 | .1291 | .1484 | .1481 | .1481 | .1587 | | | h
h' | 45.6 | 0366
4048 | 0229
3480 | 0246
3474 | 0176
3456 | 0194
3421 | | | 1
1' | 60.7 | 0575 | 0159 | 0141
5925 | 0088
5537 | 0105
5432 | | | j, | 77.8 | .0226
1116 | .0512
0653 | .0423
0670 | .0458
0652 | .0529
0670 | | | k
k' | 86.1 | .0401
0418 | .0724
0055 | .0670
0070 | .0828
0052 | .0776 | | | 1
1' | 83.8 | 7678
0087 | .0883
.0265 | .0052
.0264 | .0654
.0246 | .0917
.0282 | | 5.50 | m t | 66.5 | -0.0506
2565 | -0.0229
2226 | -0.0246
1975 | -0.0211
1940 | -0.0176
1887 | | | n
n' | 89.2 | .0575
0418 | .0936
.0212 | .0859
.0105 | .0970
.0211 | .0987
.0194 | | 4.50 | 0
0 t | 4.65 | 0.2565 | | | | | | | p
p' | 14.8 | .1780
3909 | | | | | | | ď,
ď | 43.7 | 3507
6876 | 3091
5918 | 3139
5820 | 3086
5±43 | 3051
5837 | | | r
r' | 57.6 | 2181
4310 | 1643
3392 | 1675
3368 | 1640
3350 | -:1657
-:3333 | | | 8
9' | 71.5 | 0680
2181 | 0194
1678 | 0211
1622 | 0158
1552 | 0105
1463 | | | t
t' | 90.3 | .0418
0209 | .0883
.0141 | .0846
.0123 | .0934
1693 | .1022 | | 5.8 5 | u
u' | 74.7 | -0.4363
1902 | -0.0318
1219 | -0.0317
1216 | -0.0282
1269 | -0.0246
1216 | | | v, | 91.9 | .0942 | .0600
.0742 | .0511
.0705 | .0564
.0687 | .0687
.0723 | $^{^{1}\}mathrm{Prime}$ symbols denote static orifices on suction surface. TABLE I. - Concluded. STABILIZER PRESSURE COEFFICIENTS (g) Mach number 0.63, stabilizer in fore position, deflection angle = 10° | Tail station | Tubel | Percent chord | | Jet press | ure ratio | , P ₁ /p ₀ | | |--------------|----------|---------------|-----------------|------------------------|-----------------|----------------------------------|-----------------| | | | | Jet-off | 2 | 2.5 | 3 | 3.5 | | | | | | Pressur | e coeffici | ent - | | | 11.29 | a
a¹ | 8.6 | 0.3067 | 0.3052 | 0.3106 | 0.3035 | 0.3087 | | | р;
р | 19.9 | .1733 | .1807 | .1849 | .1807 | .1824 | | | c
c ¹ | 56.2 | .0173
7400 | .0228
7 4 91 | .0244
7417 | .0228
7438 | .0210
7421 | | | đ
đ' | 76.5 | .0173
2859 | .0228
2736 | .0226
2722 | .0245
2684 | .0210
2666 | | | e
e' | 85.5 | .0225
1074 | .0228
0982 | .0244
0977 | .0245
0964 | .0263 | | 7.09 | f
f' | 4.96 | 0.2928 | 0.2947 | 0.2966 | 0.2912 | 0.2982 | | | g
g' | 12.9 | .1681 | .1684 | .1727 | .1736 | .1719 | | | h
h' | 45.6 | 0641
4228 | 0473
4210 | 0488
4118 | 0508
4175 | 0473
4105 | | | i, - | 60.7 | 0641
2963 | 0473
2824 | 0488
2774 | 0491
2789 | 0491
2789 | | | j
j' | 77.8 | 5129
1230 | 1859
1070 | .0279
1047 | 0543
1105 | 1087 | | | k
k' | 86.1 | .0311
0537 | .0561
0385 | .0558
0383 | .0526
0421 | .0543 | | | 1, | 89.8 | .0606
0173 | .0578
0017 | .0820
.0034 | .0771
0017 | .0719 | | 5.50 | m
m | 66.5 | -0.1109
3154 | -0.0894
3000 | -0.0890
2949 | -0.0912
2964 | -0.0877
2894 | | | n
n' | 89.2 | .0433
0467 | .0684
0210 | .0715
0226 | .0701
0228 | .0684
0298 | | 4.50 | 0 01 | 4.65 | 0.2686
4592 | | | | | | | p
p' | 14.8 | .1941
3240 | | | | | | | q
q' | 43.7 | 1005
5372 | 0982
5315 | 0959
5253 | 1157
5315 | 1035
5315 | | | r
r' | 57.6 | 3535
5563 | 3350
5421 | 3263
5357 | 3333
5333 | 3298
5298 | | | 8
8 ' | 71.5 | 1317 | 1105
2859 | 1082
2792 | 1105
2736 | 1122
2701 | | | t
t' | 90.3 | .0294
0641 | .0631
0350 | .0663
0349 | .0614
0350 | .0631
0298 | | 3.85 | u
u' | 74.7 | -0.1265
2391 | -0.1105
2333 | -0.1029
2233 | -0.1105
2263 | -0.1070
2421 | | | v ' | 91.9 | .0051
0606 | .0438
0333 | .0418
0314 | .0368
0298 | .0456
0280 | ¹ Prime symbols denote static orifices on suction surface. T07 Figure 1. - Schematic diagram of jet-exit model installed in 8- by 6-foot supersonic wind tunnel. ᅜ Figure 2. - Photograph of stabilizers mounted on afterbody. 3261 Location of static orifices | Tail station | Tube | Percent chord | |--------------|------|---------------| | 3.85 | ш | 74.7 | | | v | 91.1 | | 4.50 | 0 | 4.65 | | | p | 14.8 | | | q | 43.7 | | | r | 57.6 | | | \$ | 71.5 | | | t | 90.3 | | 5.50 | m | 66.5 | | | n | 89.2 | | 7.09 | f | 4.96 | | | g | 12.9 | | | h | 45.6 | | | í | 60.7 | | | Ĵ | 77.8 | | | k | 86.1 | | | ı | .89.8 | | 11.29 | 8. | 8.6 | | | ъ | 19.9 | | | c | 56.2 | | | đ | 76.5 | | | е | 85.5 | Figure 3. - Schematic diagram of horizontal stabilizer. (All dimensions in inches.) Figure 4. - Model with horizontal stabilizer in two positions. Figure 5. - Afterbody instrumentation. (All dimensions in inches.) NACA RM II54C24 (a) Stabilizer in aft position. Deflection angle, 0° . Figure 6. - Effect of jet pressure ratio on pressure distribution of stabilizer at free-stream Mach number of 1.5. (a) Concluded. Stabilizer in aft position. Deflection angle, 0° . Figure 6. - Continued. Effect of jet pressure ratio on pressure distribution of stabilizer at free-stream Mach number of 1.5. (b) Stabilizer in aft position. Deflection angle, 5°. Figure 6. - Continued. Effect of jet pressure ratio on pressure distribution of stabilizer at free-stream Mach number of 1.5. .3 20 (b) Concluded. Stabilizer in aft position. Deflection angle, 5° . 60 80 100 Figure 6. - Continued. Effect of jet pressure ratio on pressure distribution of stabilizer at free-stream Mach number of 1.5. Percent chord 40 **3261** (c) Stabilizer in aft position. Deflection angle, 10° . Figure 6. - Continued. Effect of jet pressure ratio on pressure distribution of stabilizer at free-stream Mach number of 1.5. (c) Concluded. Stabilizer in aft position. Deflection angle, 10° . Figure 6. - Continued. Effect of jet pressure ratio on pressure distribution of stabilizer at free-stream Mach number of 1.5. 24 (d) Stabilizer in fore position. Deflection angle, 10° . Figure 6. - Continued. Effect of jet pressure ratio on pressure distribution of stabilizer at free-stream Mach number of 1.5. (d) Concluded. Stabilizer in fore position. Deflection angle, 10° . Figure 6. - Concluded. Effect of jet pressure ratio on pressure distribution of stabilizer at free-stream Mach number of 1.5. Figure 7. - Effect of stabilizers on boattail pressure coefficient at free-stress Mach number of 1.5. Figure 8. - Effect of stabilizer on base annulus and secondary-flow-passage pressure coefficients at free-stream Mach number of 1.5.